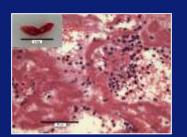
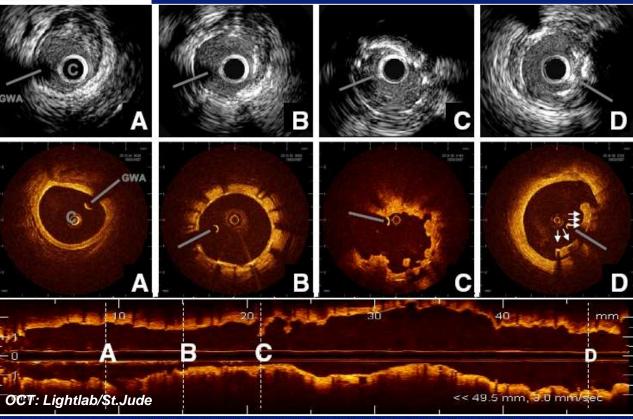


TCTAP 2014, Session: DES Failure: Why and How?

The Imaging Evidences: Time-related Differences in Restenosis

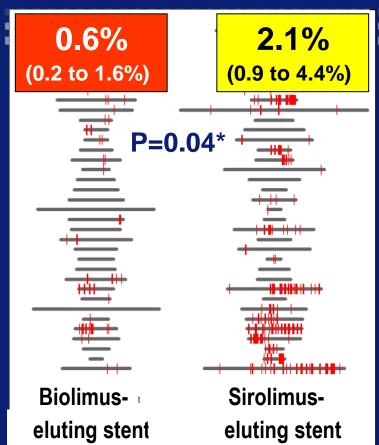
E. Regar
Thoraxcenter
Erasmus Medical Center
Rotterdam, NL


MAGES IN INTERVENTION

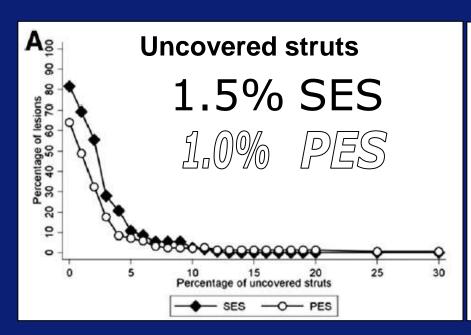

Optical Coherence Tomography Findings in Very Late (4 Years) Paclitaxel-Eluting Stent Thrombosis

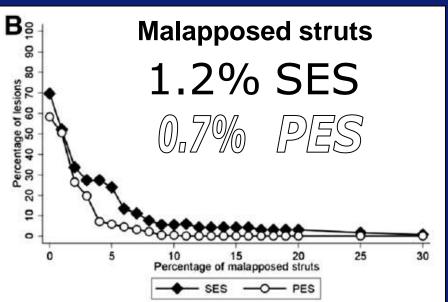
Arend F. L. Schinkel, MD, PhD, "Peter Barlis, MD, "Heleen M. M. Patrick W. Serruys, MD, PhD, FACC," Evelyn Regar, MD, PhD

Rotterdam, the Netherlands



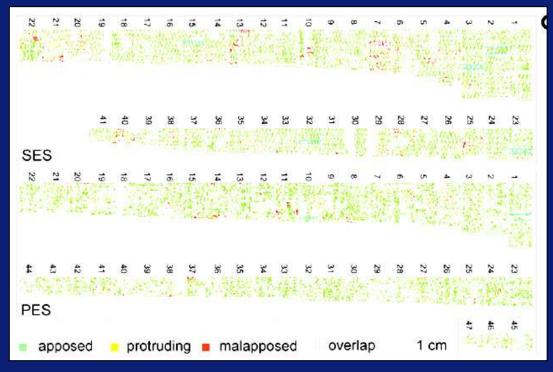
Low incidence! at 9m FUP



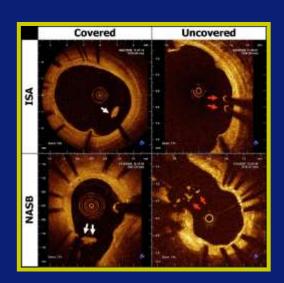

LEADERS Trial

Limus Eluted from A Durable versus ERodable Stent Coating
Graphical representation of stent coverage in lesions

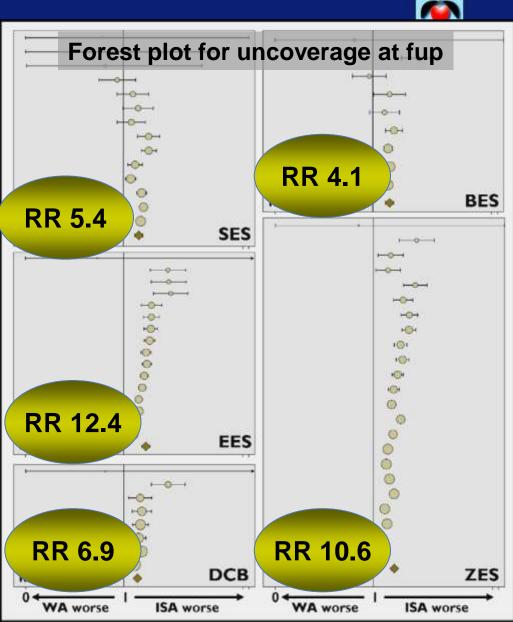
Low incidence! at 5y FUP



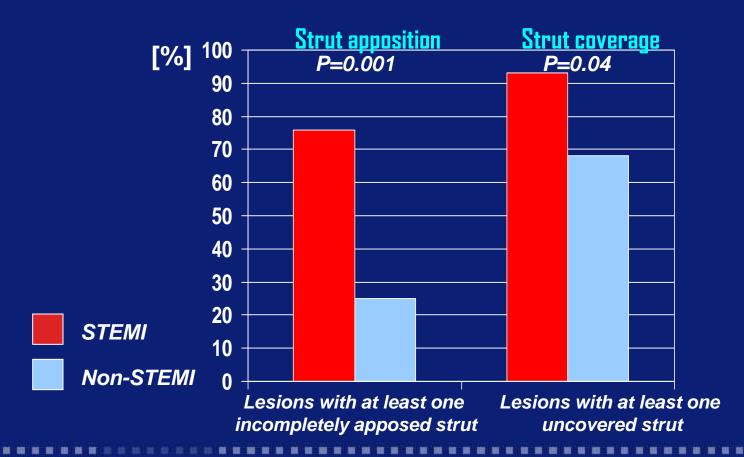
SIRTAX late OCT trial; N=88 pts; event-free; FUP 5y


Low incidence! Clustering in few patients

SIRTAX late OCT trial; N=88 pts; event-free; FUP 5y



Interaction: Malapposed struts are at increased risk for uncoverage


incomplete strut apposition

WA: well-apposed struts

Higher incidence in patients treated for STEMI

Gonzalo, Regar et al. JACC: Cardiovascular Interv. 2009;2(5):445-52.

Higher incidence in pts with Late Stent Thrombosis!

Table 2. Optical Coherence Tomography Imaging Measurements				
	ST	Control		
Cross-section level analysis				
Analyzed cross-sections/patient, n	27 ± 12	30 ± 13	0.47	
Struts analyzed/cross-section, n	6.78 ± 1.22	6.74 ± 1.41	0.93	
Frequency of cross-sections with uncovered struts, %	33.30 (11.82-53.00)	0.00 (0.00-7.80)	0.003	
Frequency of cross-sections with $>$ 30% uncovered struts, %	21.59 (0.00-43.70)	0.00 (0.00-6.09)	0.002	
Maximum length of segments with uncovered struts, mm	3.30 (1.35-4.13)	0.90 (0.00-1.55)	< 0.001	
Maximum length of segments with malapposed struts, mm	1.40 (0.68-1.93)	0.00 (0.00-0.00)	0.001	
Maximum malapposition distance, mm	0.35 (0.00-0.75)	0.00 (0.00-0.62)	0.002	
Area of malapposition, mm²	1.02 (0.00-1.92)	0.00 (0.00-0.32)	0.002	
Minimum stent area, mm²	5.04 ± 1.23	5.50 ± 1.27	0.26	
Mean stent area, mm²	7.24 ± 0.97	7.69 ± 1.61	0.20	
Mean neointimal area, mm²	1 57 + 0 68	1 68 + 0 71	0.41	
Uncovered struts/pts	12.2%	4.2%	0.001	
Malapposed struts/pts	4.6%	1.8%	0.001	
Number of malapposed struts/patient	10.00 (2.25-21.75)	4.00 (0.00-7.00)	0.02	
Frequency of malapposed struts/patient, %	4.60 (1.85-7.19)	1.81 (0.00-2.99)	0.001	
Neointimal thickness of covered struts, mm	0.23 ± 0.15	0.17 ± 0.09	0.28	

OCT Predictor of Late DES Thrombosis

Uncovered struts segment length

Examination of the In Vivo Mechanisms of
Late Drug-Eluting Stent Thrombosis

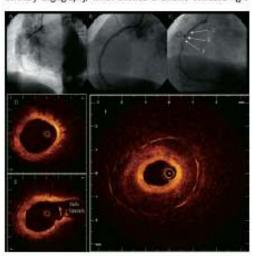
Findings From Optical Coherence Tomography and
Intravascular Ultrasound Imaging

Giulio Guagliumi, MD,* Vasile Sirbu, MD,* Giuseppe Musumeci, MD,*
Robert Gerber, MD,† Giuseppe Biondi-Zoccai, MD,* Hideyuki Ikejima, MD,*
Elena Ladich, MD,‡ Nikoloz Lortkipanidze, MD,* Aleksandre Matiashvili, MD,*
Orazio Valsecchi, MD,* Renu Virmani, MD,‡ Gregg W. Stone, MD§

Table 4 Exploratory Multivariable Logistic Regression Analysis of Late Stent Thrombosis

Variable	OR (95% CI)	p Value
Maximum length of segments with uncovered struts at OCT, mm	2.45 (1.27–4.73)	0.007
Remodeling index at IVUS*	1.05 (1.01–1.11)	0.019

Mechanisms of Stent Failure: Restenosis

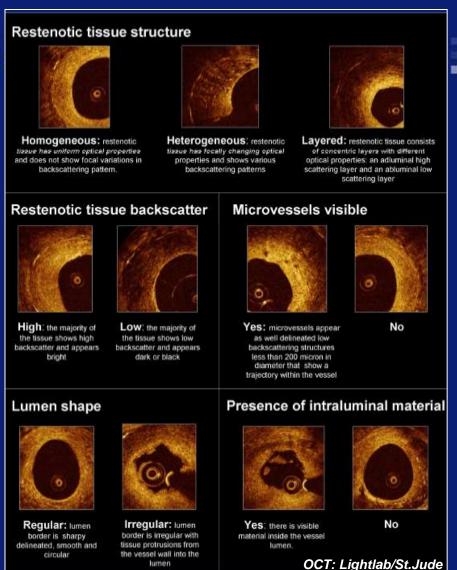

EuroIntervention

Paclitaxel-eluting stent restenosis shows three-layer appearance by optical coherence tomography

Shuzou Tanimoto, MD; Jiro Aoki, MD; Patrick W. Serruys, MD, PhD; Evelyn Regar*, MD, PhD

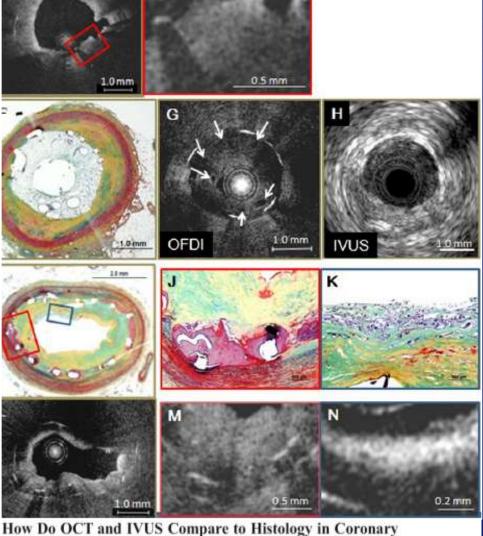
Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands.

A 73-year-old worman with hypertension, hyperlipidemia and positive familial history of coronary artery disease presented with Canadian Cardiovascular Society class III angina and underwent coronary angiography, which showed a chronic occluded right


coronary artery (Panel A). The vessel was recanalized and treated with three pacificatel-eluting stents (TAXUS*, Boston Scientific: 3.5 x 32 mm distally, 3.5 x 28 mm in the middle part, 3.5 x 12 mm proximally). Postintervention coronary angiography showed a good result (Panel B). Twelve-month follow-up angiography revealed focal in-stent restenosis (Panel C). Intracoronary optical coherence tomography (OCT: LightLabirnaging™, Boston, MA, USA) pullback displayed well-expanded stems covered with a thin, homogenous, highly reflective neointimal layer (Panel D, E), in contrast, the narrowest lesion site (minimal lumen area 1.1 mm²; stent area 9.0 mm²) showed a three-layer appearance of the neolintima (Panel F). The inner luminal layer appeared concentric, homogenous and signal-rich (maximal thickness 0.27 mm). A second layer consisting of a low-reflective area with poorly delineated borders followed. The third layer was in direct contact with the stent struts and revealed only minimal signal intensity. These signal-poor areas (maximal thickness 1.18 mm) might represent acellular fibrinoid deposition that has been well described in experimental studies. The patient was re-breated with repeat pacifiaxel-eluting stent implantation. OCT is an analogue of intravascular ultrasound with an ultra-high resolution (10 µm) superior to any current available imaging modalities. This imaging device may be useful in visualizing neointimal growth in drug-eluting stents and improve our understanding of its underlying physiopathology in the future.

OCT: Lightlab/St.Jude

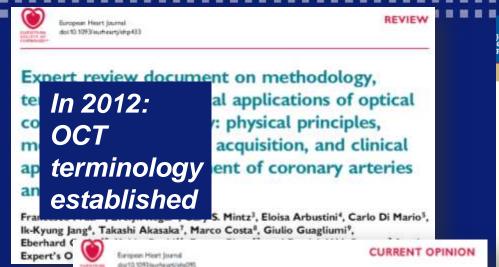
Mechanisms of Stent Failure: Restenosis


In 2009: OCT analysis descriptive

Mechanisms of Stent Failure: Restenosis

Erasmus MC 2 afuns

In 2012: OCT validation against histology



How Do OCT and IVUS Compare to Histology in Coronar, Atherosclerosis and Stenting?

Fumiyuki Otsuka - Masataka Nakano -Frank D. Kolodgie - Renu Virmani

Mechanisms of Stent Failure: Restenosis

Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures

Francesco Prati^{1,2a}, Giulio Guagliumi³, Gary S. Mintz⁴, Marco Costa⁵, Evelyn Regar^{6,7}, Takashi Akasaka⁸, Peter Barlis⁹, Guillermo J. Tearney^{10,11}, Ik-Kyung Jang¹², Elosia Arbustini¹³, Hiram G. Bezerra⁵, Yukio Ozaki¹⁴, Nico Bruining^{6,7}, Darius Dudek¹⁵, Maria Radu^{6,7}, Andrejs Erglis¹⁶, Pascale Motreff¹⁷, Fernando Alfonso¹⁸, Kostas Toutouzas¹⁹, Nieves Gonzalo²⁹, Corrado Tamburino²¹, Tom Adriaenssens²², Fausto Pinto²³, Patrick W.J. Serruys^{6,7}, and Carlo Di Mario^{24,25}, for the Expert's OCT Review Document oumal of the American College of Cardiology 3 2012 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 59, No. 12, 2012 ISSN 0735-1097/\$36.00 doi:10.1016/j.jacc.2011.09.079

INI-FOCUS ISSUE: OPTICAL COHERENCE TOMOGRAPHY

Clinical Research

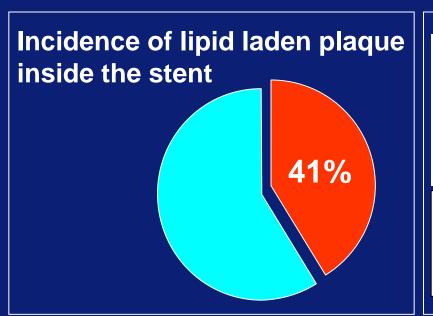
Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies

A Report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation

Guillermo J. Tearney, MD, PhD, Writing Committee Co-Chair,* Evelyn Regar, MD, PHD, Writing Committee Co-Chair, Takashi Akasaka, MD, Writing Committee Co-Chair, ‡ Tom Adriaenssens, MD, Peter Barlis, MD, Hiram G. Bezerra, MD, Brett Bouma, PHD, Nico Bruining, PhD, Jin-man Cho, MD, PhD, Saqib Chowdhary, PhD, Marco A. Costa, MD, PhD, Ranil de Silva, MD, PhD, Jouke Dijkstra, PhD, Carlo Di Mario, MD, PhD, Darius Dudeck, MD, PhD, Erlin Falk, MD, PhD, Marc D. Feldman, MD, Peter Fitzgerald, MD, Hector Garcia, MD, Nieves Gonzalo, MD, Juan F. Granada, MD, Giulio Guagliumi, MD, Niels R. Holm, MD, Yasuhiro Honda, MD, Fumiaki Ikeno, MD, Masanori Kawasaki, MD, Janusz Kochman, MD, PhD, Lukasz Koltowski, MD, Takashi Kubo, MD, PHD, Teruyoshi Kume, MD, Hiroyuki Kyono, MD, Cheung Chi Simon Lam, MD, Guy Lamouche, PHD, David P. Lee, MD, Martin B. Leon, MD, Akiko Maehara, MD, Olivia Manfrini, MD, Gary S. Mintz, MD, Kyiouchi Mizuno, MD, Marie-angéle Morel, MD, Seemantini Nadkarni, PHD, Hiroyuki Okura, MD, Hiromasa Otake, MD, Arkadiusz Pietrasik, MD, Francesco Prati, MD, Lorenz Räber, MD, Maria D. Radu, MD, Johannes Rieber, MD, Maria Riga, MD, Andrew Rollins, PhD, Mireille Rosenberg, PhD, Vasile Sirbu, MD, Patrick W. J. C. Serruys, MD, PHD, Kenei Shimada, MD, Toshiro Shinke, MD, Junya Shite, MD, Eliot Siegel, MD, Shinjo Sonada, MD, Melissa Suter, PhD, Shigeho Takarada, MD, PhD, Atsushi Tanaka, MD, PhD, Mitsuyasu Terashima, MD, Thim Troels, MD, PhD, Shiro Uemura, MD, PhD, Giovanni J. Ughi, PhD, Heleen M.M. van Beusekom, PhD, Antonius F.W. van der Steen, PhD,

Boston, Massachusetts; Rotterdam, the Netherlands; and Wakayama, Japan

Neil J. Weissman, MD, Giora Weisz, MD


Gerrit-Ann van Es, PhD, Gijs van Soest, PhD, Renu Virmani, MD, Sergio Waxman, MD,

and Carto Di Plaffort of the Expert's OCT Review Document

Corner-Main State Del PhD, Chora Weez, MD J Am Coll Cardiol. 2012

High incidence

Development of lipid-rich plaque inside bare metal stent: possible mechanism of late stent thrombosis? An optical coherence tomography study

Jingbo Hou, ¹ Hai Qi, ¹ Maomao Zhang, ¹ Lijia Ma, ¹ Huimin Liu, ¹ Zhigang Han, ¹ Lingbo Meng, ¹ Shuang Yang, ¹ Shaosong Zhang, ² Bo Yu, ¹ Ik-Kyung Jang ³

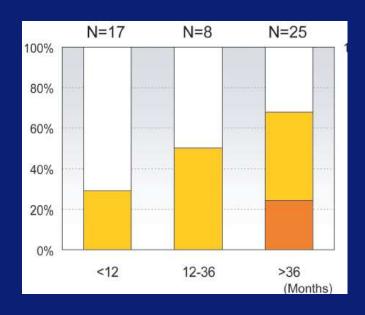
N= 39 pts with recurrent ischemia FUP 6.5±1.3 years after BMS

High incidence Earlier onset in DES than in BMS

100 | p=0.01 | p=0.01 | p=0.02 | p=0.03 | p=0.02 | p=0.02 | p=0.02 | p=0.02 | p=0.02 | p=0.02 | p=0.03 | p=0.03

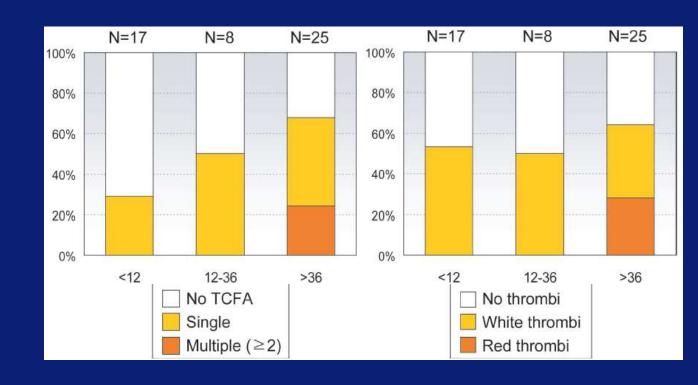
p=0.01

p<0.01

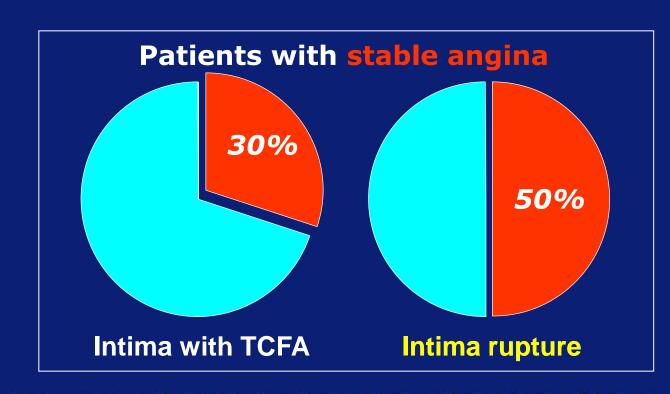

Incidence of lipid-laden intima

%.

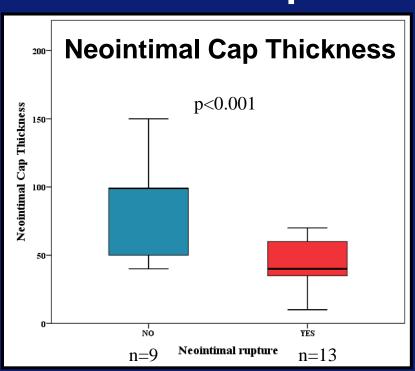
MGH OCT multicenter registry N=124 pts with neointimal thickness >100µm in 3 consecutive cross sections

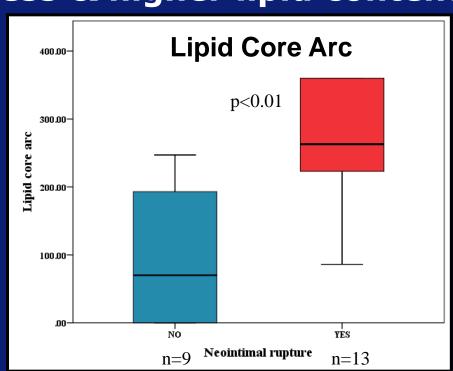


Increased TCFA

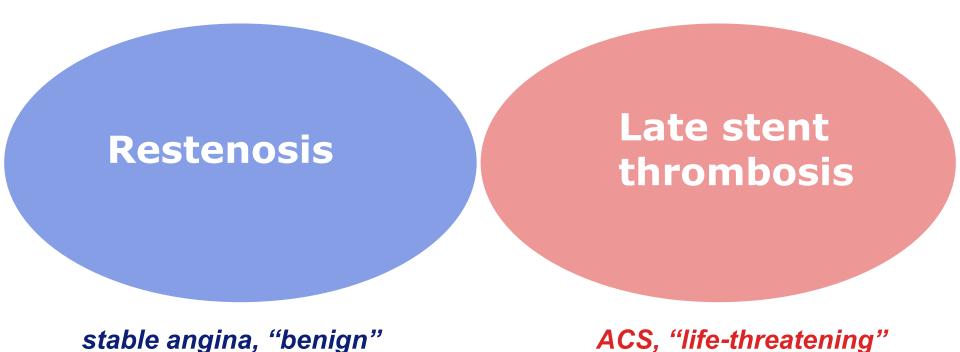


Increased TCFA & Thrombi over time




Increased TCFA & Thrombi over time Irrespective of clinical presentation

Stents with neointimal rupture lower fibrous cap thickness & higher lipid content



N=29 pts with very late stent thrombosis

The link between restenosis & late stent thrombosis?

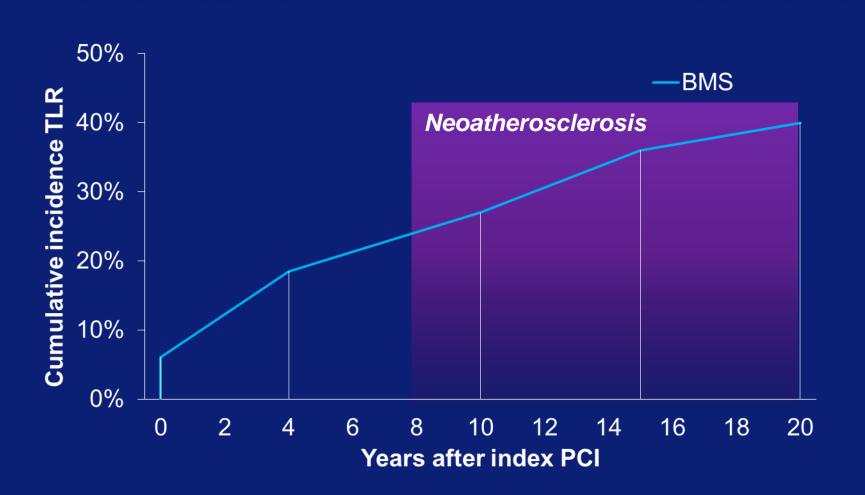
The link between restenosis & late stent thrombosis?

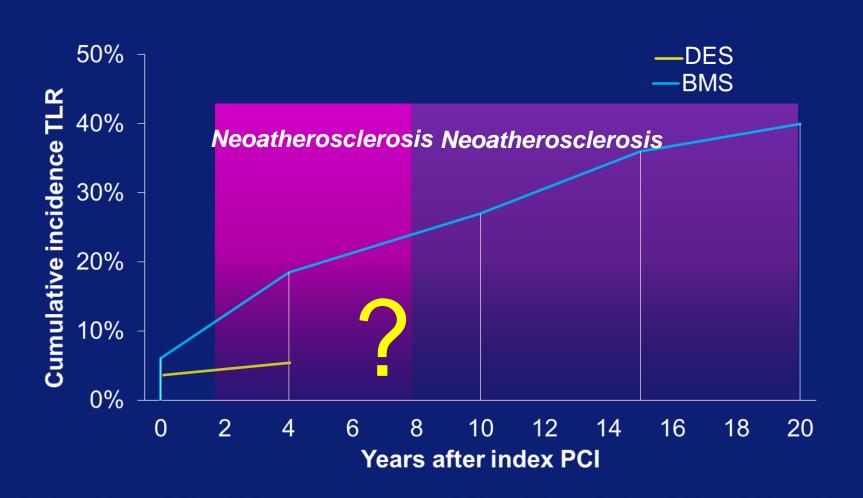
Neoatherosclerosis



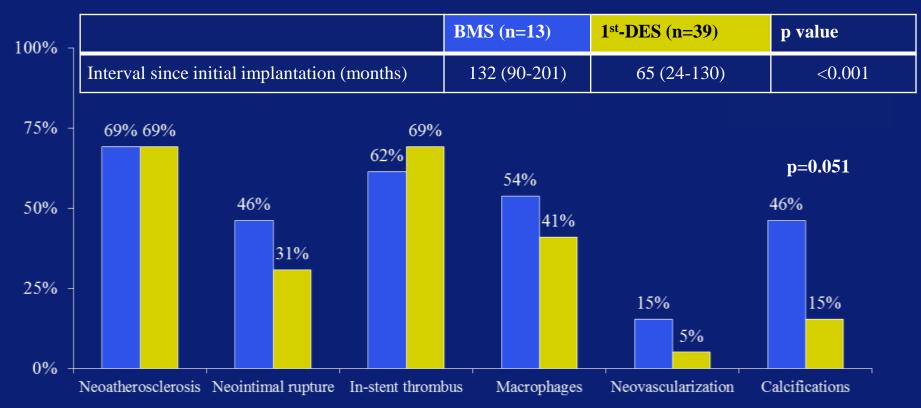
The link between restenosis & late stent thrombosis?

What's about timing?


Evidence of Ongoing Stent Failure


Evidence of Ongoing Stent Failure

Evidence of Ongoing Stent Failure



Evidence of Ongoing Stent Failure Differences BMS vs DES 1st gen

Neoatherosclerosis in DES develops earlier with lower prevalence of calcifications

Stent thrombosis and restenosis

- have various mechanisms (mechanical, pharmacological, biological)
- both may be associated with coronary thrombosis
- neoatherosclerosis might be a common pathway

Mechanisms and Predictors of Stent Thrombosis and Restenosis: Insights from OCT

Stent thrombosis and restenosis = stent failure

- have various mechanisms (mechanical, pharmacological, biological)
- both may be associated with coronary thrombosis
- neoatherosclerosis might be a common pathway
- predictors are not well established yet

Mechanisms and Predictors of Stent Thrombosis and Restenosis: Insights from OCT

Stent thrombosis and restenosis = stent failure

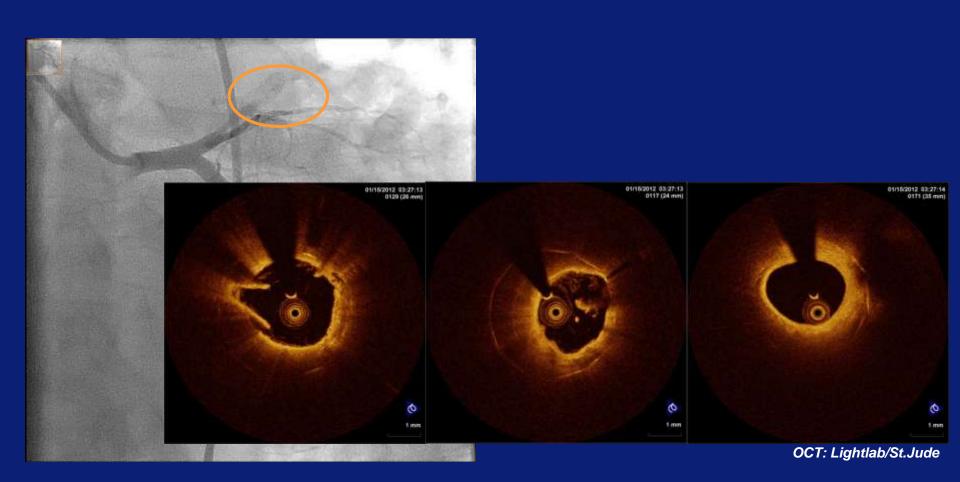
- have various mechanisms (mechanical, pharmacological, biological)
- both may be associated with coronary thrombosis
- neoatherosclerosis might be a common pathway
- predictors are not well established yet
- develops much earlier in DES 1st gen than BMS

Stent thrombosis and restenosis = stent failure

- have various mechanisms (mechanical, pharmacological, biological)
- both may be associated with coronary thrombosis
- neoatherosclerosis might be a common pathway
- predictors are not well established yet
- develops much earlier in DES 1st gen than BMS

Angiography fails to accurately visualize stent failure!

VLST: Neoatherosclerosis & Rupture


Erasmus MC zafuns

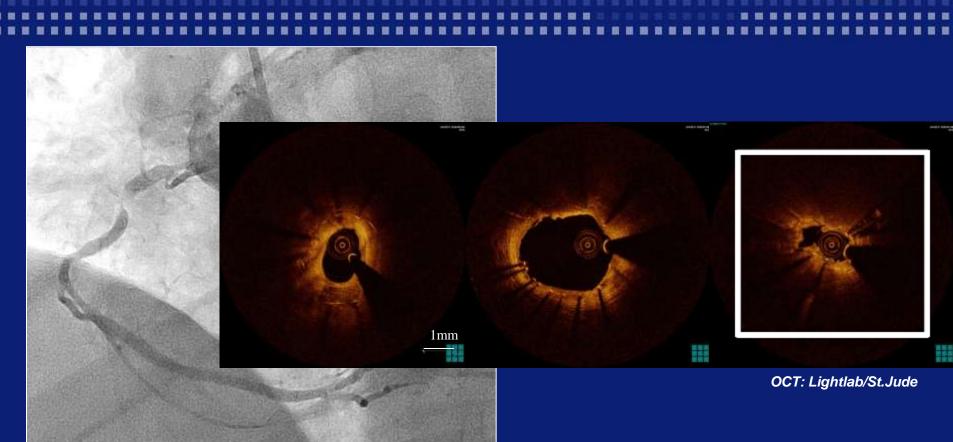
51y male presenting with anterior MI, 2004 PES implantation LAD. No CAD risk factors.

VLST: Neoatherosclerosis & Rupture

Erasmus MC zafuns

51y male presenting with anterior MI, 2004 PES implantation LAD. No CAD risk factors.

VLST: Mechanical Stent Problem



79 year old woman resuscitated after cardiac arrest. 2008 EES implantation. Pos. family history for CADO

VLST: Mechanical Stent Problem

Erasmus MC zafung

79 year old woman resuscitated after cardiac arrest. 2008 EES implantation. Pos. family history for CAD

Thank you for your attention!

PhD Students

A. Karanasos

N. van Ditzhuijsen

J. van der Sijde

Interventional Cardiology

J. Ligthart

K. Witberg

R.J. van Geuns

P. de Jaegere

N. van Mieghem

M. Valgimigli

R. Diletti

F. Zijlstra

Experimental
Cardiology
H. van Beusekom

Hemodynamics Laboratory

J. Wentzel F. Gijsen

Bioengineering

G. van Soest

A.F.W. van der Steen

Imaging Group

N. Bruining

K. Sihan